Nonlinear stability of multistep multiderivative methods
نویسندگان
چکیده
منابع مشابه
A Necessary Condition for ^ 4 - Stability of Multistep Multiderivative Methods
The region of absolute stability of multistep multiderivative methods is studied in a neighborhood of the origin. This leads to a necessary condition for Astability. For methods where p(f)/(f 1) has no roots of modulus 1 this condition can be checked very easily. For Hermite interpolatory and Adams type methods a necessary condition for A -stability is found which depends only on the error orde...
متن کاملStability of implicit - explicit linear multistep methods
In many applications, large systems of ordinary di erential equations (ODEs) have to be solved numerically that have both sti and nonsti parts. A popular approach in such cases is to integrate the sti parts implicitly and the nonsti parts explicitly. In this paper we study a class of implicit-explicit (IMEX) linear multistep methods intended for such applications. The paper focuses on the linea...
متن کاملStability properties of implicit-explicit multistep methods for a class of nonlinear parabolic equations
We consider the discretization of a special class of nonlinear parabolic equations, including the complex Ginzburg–Landau equation, by implicit–explicit multistep methods and establish stability under a best possible linear stability condition.
متن کاملStability of Implicit and Implicit–explicit Multistep Methods for Nonlinear Parabolic Equations
We analyze the discretization of nonlinear parabolic equations in Hilbert spaces by both implicit and implicit–explicit multistep methods and establish local stability under best possible and best possible linear stability conditions, respectively. Our approach is based on suitable quantifications of the non-self-adjointness of linear elliptic operators and a discrete perturbation argument.
متن کاملStability of linear multistep methods and applications to nonlinear parabolic problems
In the present paper, stability and convergence properties of linear multistep methods are investigated. The attention is focused on parabolic problems and variable stepsizes. Under weak assumptions on the method and the stepsize sequence an asymptotic stability result is shown. Further, stability bounds for linear nonautonomous parabolic problems with Hölder continuous operator are given. With...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1990
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1990-1035938-x